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Outline

* Deep Learning
» Artificial intelligence, machine learning, deep learning
» Human learning versus machine learning
» Some histories about deep learning
» Popular deep learning models

* Speech Signal Processing
» Two categories of tasks: recognition and generation
» Recognition: pathological voice recognition
» Generation: speech enhancement
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Machine Learning and Artificial Intelligence

Artificial intelligence(Al) is intelligence
exhibited by machines, mainly covers:
1. Deduction, reasoning, problem solving
2. Knowledge representation
3. Default reasoning and the qualification
problem
4. Machine planning
5. Machine learning

From wiki
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Machine Learning and Artificial Intelligence

Artificial intelligence(Al) is intelligence
exhibited by machines, mainly covers:
1. Deduction, reasoning, problem solving
2. Knowledge representation
3. Default reasoning and the qualification
problem
4. Machine planning
5. Machine learning

Pattern recognition

Density estimation

Linear models for regression
Linear models for classification
Neural networks

Kernel methods

Sparse kernel machines

From M. Svensen & C. Bishop, “Pattern

recognition and machine learning”
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Human Perception: Classification
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Human Perception: Classification
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Human Perception: Regression
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Human Perception: Regression
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Performance Evaluation: Correlation
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Human Learning: Exemplar Theory
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Human Learning: Exemplar Theory
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Human Learning: Exemplar Theory
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Human Learning: Exemplar Theory

Machine Learning:

Discriminative models, such as:

« Support vector machine (SVM),
« Artificial neural networks (ANN),
* Deep neural network (DNN).
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Human Learning: Prototype
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Human Learning: Prototype
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Human Learning: Prototype
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Human Learning: Prototype

P(OlA car)

Machine Learning:

Generative models, such as:

« (Gaussian mixture models (GMM),

» Restricted Boltzmann machine (RBM),
» Deep belief network (DBN).
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Human Learning: Prototype vs. Exemplar

Research Center for Information Technology Innovation, Academia Sinica

25



Machine Learning:
Discriminative vs. Generative Models

Class 1

Class 2
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Machine Learning: Data and Labels

Image Speech WIFI

| want to play a game
[IZelollAES: I
The move is so scary :
h 4 v u a L oal : : \ : o e e iy
He enjoys watching it :
aB-De-DoE et
P e EE

Research Center for Information Technology Innovation, Academia Sinica



Machine Learning: Data and Labels
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Labeling Error




Machine Learning and Artificial Intelligence

Artificial intelligence(Al) is intelligence
exhibited by machines, mainly covers:
1. Deduction, reasoning, problem solving
2. Knowledge representation
3. Default reasoning and the qualification
problem
4. Machine planning
5. Machine learning

Pattern recognition

Density estimation

Linear models for regression
Linear models for classification
Deep Neural networks

Kernel methods

Sparse kernel machines

From M. Svensen & C. Bishop, “Pattern

recognition and machine learning”
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Artificial Neural Network (ANN)

* Artificial neural network (ANN) is a computational model
that mimics brain functionality with artificial means.

From Youtube
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Artificial Neural Network (ANN)

* Artificial neural network (ANN) is a computational model
that mimics brain functionality with artificial means.
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Artificial Neural Network (ANN)

* Artificial neural network (ANN) is a computational model
that mimics brain functionality with artificial means.
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From B.-H. Juang, "Deep neural networks — a developmental perspective," APSIPA Trans. on SIP
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Artificial Neural Network (ANN)

* Artificial neural network (ANN) is a computational model
that mimics brain functionality with artificial means.
* Deep architecture was not successful at first, because
» Insufficient labeled data.

» Limited computation power.

* Learning from unlabeled data (generative models)
» To make use of huge amount of unlabeled data.

Followed by a fine-tuning to perform classification
» Generative model serves as a good initial point.

* Deep models achieve current state-of-the-art performances
in object recognition, speech recognition,...etc.
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Deep Neural Network (DNN)

 DNN: layered neural nets with many hidden layers.

* Adding extra layers increases representational power of
the overall model.

* DNNs were somewhat disappointing 20 years ago, because
» Labeled data was insufficient.
» Computation power was limited.
» The problem of random initials and vanishing gradients.
» Support vector machine (SVM) has been proposed.
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Pre-training for DNN

* With advanced computation power, current issue of DNN:
» The problem of random initials and vanishing gradients.

* How can we overcome the issue?
> By ‘pre-training’ the networks, such RBMs, auto-encoder.
* Why pre-training ?

» Utilizing large amount of unlabeled-data effectively.

‘)

» Providing a good initial point.
* Procedure and assumptions of pre-training

» Learn one layer at a time and stack them up.

» Shallow models are easier to train, and can be used for
initialization of deep models.
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Fine-tuning on DNN Parameters based on Back-
propagation

* After pre-training, back-propagation is performed to fine-
tune the model parameters

» A big difference to original approach of initializing with random
weights then back-propagation.

» Because now we already have a sensible initialization ?)ints before
performing back-propagation.

» This is the key difference between deep learning and traditional
neural network 20 years ago.

» Deep belief network (DBN) is generally used for pre-training, and
restricted Boltzmann machine (RBM) is the function box of DBN.

Research Center for Information Technology Innovation, Academia Sinica
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Recent Advances in Deep Learning
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Recent Advances in DL and Al

nature Cew~ ] NATULE

International journal of science International journal of science

EEER B Altmetric: 3197  Citations: 569 More detail > ENEL N Altmetric:2152 Citations: 1 More detail »
Article Article

Mastering the game of Go with deep Mastering the game of Go without human
neural networks and tree search knowledge

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,

Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,

Laurent Sifre, George van den Driessche, Thore Graepel & Demis Hassabis
Koray Kavukcuoglu, Thore Graepel & Demis Hassabis

Nature 550, 354-359 (19 October 2017) Received: 07 April 2017
Nature 529, 484-489 (28 January 2016) Received: 11 November 2015 doi:10.1038/nature24270 Accepted: 13 September 2017
dois10: 1038/ REHITET6061 Accepted: D5:JahiIary2016 Download Citation Published online: 18 October 2017
Download Citation Published online: 27 January 2016

Computational science Computer science
Computational science Computer science

Reward
Reward

.;r;rger ref@
AlphaGo vs  Ke Jie :
3 0

Artificial
Intelligence

<3>

39




Recent Advances in DL and Al
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Fully Connected NNs
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Convolutional NNs
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* Reducing number of connections
« Shared weights on the edges

« Max pooling further reduces the complexity
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Fully Connected NNs

hidden layer 1 hidden layer 2 hidden layer 3
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Recurrent NNs
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The NN Family
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Outline

Deep Learning

» Artificial intelligence, machine learning, deep learning
» Human learning versus machine learning

» Some histories about deep learning

» Popular deep learning models

Speech Signal Processing

» Two categories of tasks: recognition and generation
» Recognition: pathological voice recognition

» Generation: speech enhancement
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Speech Generation (Regression Task)
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Speech Signal Recognition (Classification Task)

Speaker ID
Speaker Recognition l l ' '

Emotion type

Emotion Recognition l l ' '

Pathological type
Pathological Voice Recognition ' ' ' '

Speech Recognition UThe Los Ange... 7

Input T() mmmm) Output

Feature Extraction
MFCC, Fbank, I-vector, Prosodic Features, and Raw-data
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Speech Generation (Regression Task)
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Deep Learning based Speech Enhancement
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DL for Denoising

Clean speech
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DL for De-reverbaration

Clean speech
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Source Separation
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DL for Voice Conversion
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DL for Channel Compensation
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Audio Denoising System on PC

1. Raw Speech
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Audio Denoising System on Smartphone
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Cl Device

Transmitter coil

Speech processor:

1. Microphone.
2. DSP chip.

3. Battery

4. Others...

58



T

1=

[£]

*%El: ‘D\Z:E%’ ’E;H‘I]Z:'E'?

] (intelligibility) EL3E (perception) B2

Research Center for Information Technology Innovation, Academia Sinica

59



Cochlear Implant (Cl)

* Surgically implanted device that electrically
stimulates surviving auditory nerve fibers to provide
sound for those with severe hearing loss.

* Qver 200,000 users worldwide.

* FDA approved in 1985, now approved for children as
young as 12 months.
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Cl Device
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Cl Device

Von Békésy, Georg
(1960). Experiments in
hearing. Ed. Ernest Glen
Wever. Vol. 8. New York:

McGraw-Hlill. /
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Bandpass and Envelope Extraction

amplitude
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(A) Waveform of the word “human” spoken by a native American speaker. (B)
Spectrogram of the same word. (C) Green lines: Output of a set of six bandpass filters in

response to the same word. The filter spacing and bandwidth in this example are two-
thirds of an octave.
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Signal Processing of Ci

Electric array
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A Critical Issue of Cl

* The tremendous progress of Cl technologies in the past three

decades has enabled many Cl users to enjoy high level of speech
understanding in quiet.

*  For most Cl users, however, the performance of speech
understanding in noise still remains challenging.

» F. Chen, Y. Hu, and M. Yuan, “Evaluation of Noise Reduction Methods for Sentence Recognition by
Mandarin-Speaking Cochlear Implant Listeners,” Ear and hearing, vol. 36, no. 1, pp. 61-71, 2015.

* Deep learning based speech enhancement (SE) for CI.
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Signal Processing of Ci

Electric array
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DL-based Noise Reduction on CI
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Vocoded Speech
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Normal Speech
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Evaluation Results (Simulations and Subject Tests)
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» Y.-H. Lai, F. Chen, S.-S. Wang, X. Lu, Y. Tsao, and C.-H. Lee, "A
Deep Denoising Autoencoder Approach to Improving the
Intelligibility of Vocoded Speech in Cochlear Implant
Simulation," IEEE Transactions on Biomedical Engineering.

> Y.-H. Lai, Y. Tsao, X. Lu, F. Chen, Y.-T. Su, K.-C. Chen, Y.-H. Chen,
L.-C. Chen, P.-H. Li, and C.-H. Lee, "Deep Learning based Noise
Reduction Approach to Improve Speech Intelligibility for

RN ) ) Cochlear Implant Recipients,” Ear and Hearing.
Vocoder results: 10 normal hearing subjects.
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Speech Signal Recognition (Classification Task)

Speaker ID
Speaker Recognition l l ' '

Emotion type

Emotion Recognition l l ' '

Pathological type
Pathological Voice Recognition ' ' ' '

Speech Recognition UThe Los Ange... 7
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Feature Extraction
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Pathological Voice Detection and Processing

Oral cancer (top five cancer for male in Taiwan).
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Disordered voice
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Detection of Pathological Voice based on
Acoustic Signals

Offline phase DNN classifier
Hidden laver Qutput l:l.\"cl:‘
hy; hj
: ® O ¥
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N >
Database .._" ®- p
Feature , o o /30,
cxtraction //,7/»‘:/
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Online phase

J
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Pathological

' | Feaiyre DNN model f——  or
l ¥ ' 1 extraction Normal

TABLE 5.
Detection of Pathological Voice Samples in the MEEI Voice Disorder Database
SVM GMM DNN
Accuracy + Standard Accuracy + Standard Accuracy + Standard
Deviation Deviation Deviation

MFCC 98.28 +2.36% 98.26 +1.80% 99.14 +1.92%
MFCC + delta 93.04 £2.74% 90.24 +4.18% 94.26 +2.25%
MFCC(N) + delta 87.40 +1.92% 90.20 +3.83% 90.52 +2.00%
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Detection of Pathological Voice based on
Demographic and Symptomatic Features

Offline phase I DNN classifier

Pathological

DNN model —— or
Normal

Demographics

SVM 73.0%+10.4% 72.8%+2.34% 67.1%+6.99% 71.0%+3.87%
ANN 80.0%+7.07% 71.2%+2.74% 62.6%+4.33% 71.3%+41.85%
Symptoms
SVM 60.0%+12.3% 61.4%+6.07% 73.6%+6.20% 65.0%+3.07%
ANN 56.0%+5.48% 68.4%+45.25% 72.3%+5.40% 65.6%+4-2.29%
Demographics + symptoms
SVM 82.0%+7.58% 79.5%41.45% 83.9%+7.90% 81.8%+4.87%
ANN 83.0%+7.58% 79.4%+1.83% 86.5%+2.70% 83.0%+1.58%
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Detection of Pathological Voice based on
Combining Voice and Medical Records

= -~ De
Sofr e

Medical Record Acoustic Feature

 — i"-"“(-l-)-l_?-ir-s-t-é-t;é; """"" e \

{|_DNN DNN [
:":,""' "7 (2) Second Stage  { |
' DNN :
| 7/

- ’? Dx1: Neoplasm
y | Dx2: Phonotrauma

(e-g. polyp)
Dx3: Paralysis

Neoplasm Phonotrauma Vocal Palsy

Accuracy UAR
Sensitivity (Recall)

Acoustic signals ~ 63.00£17.89 (%)  95.36+4.39 (%)  34.40420.12 (%)  76.94+6.71 (%)  64.25%£11.04 (%)

Medical record ~ 59.00£11.40 (%)  91.54£3.67 (%)  70.40£2.19 (%)  81.56£1.25 (%)  73.65+3.49 (%)

TSD 79.00£14.75 (%) 95.36+£3.03 (%) 704041043 (%) 87.26+2.23 (%)  81.59+5.94 (%)
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Remote Monitoring on Pathological Voice
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IEEE BigData
2019

The FEHH Voice Data FEMH Voice Data Challenge 2019

Challenge
|EEE BigData 2019
Los Angeles, CA, USA

Welcome

Home

- Computerized detection of voice disorders has attracted considerable academic and clinical
Data & Regulation
interest in the hope of providing an effective screening method for voice diseases before
ool endoscopic confirmation. The goal is to detect pathological voice and classify four disordered
eaderboar

_ categories. Different from last year, the task of this year includes both acoustic waveforms and

Organizers y . : 3 ; :
g medical records. Therefore, multimodal algorithms should be useful. We believe that the task is
Beeialon g Cotachie more challenging and interesting than last year. We will award the top three teams with medals

and cash prizes. We sincerely welcome your participation.

This competition builds on the experience of previous research work and all source codes are

available here (Document).

Latest Updates
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Conclusion

* Deep Learning
» Artificial intelligence, machine learning, deep learning
» Human learning versus machine learning
» Some histories about deep learning
» Popular deep learning models

* Speech Signal Processing
» Two categories of tasks: recognition and generation
» Generation: speech enhancement
» Recognition: pathological voice recognition

Hearing Tmpoivmert

Research Center for Information Technology Innovation, Academia Sinica 79




Bio-ASP Lab in CITIl, Academia Sinica
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Bio-ASP Lab

Biomedical Acoustic Signal Processing Lab

Contact: yu.tsao@citi.sinica.edu.tw
More Information: http://bio-
asplab.citi.sinica.edu.tw/
Publications:
https://www.citi.sinica.edu.tw/page
s/yu.tsao/publications en.html
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